On the Multiplicative Zagreb Indices of Bucket Recursive‎ ‎Trees

نویسنده

چکیده مقاله:

‎Bucket recursive trees are an interesting and natural‎ ‎generalization of ordinary recursive trees and have a connection‎ to mathematical chemistry‎. ‎In this paper‎, ‎we give the lower and upper bounds for the moment generating‎ ‎function and moments of the multiplicative Zagreb indices in a‎ ‎randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$‎. Also, ‎we consider the ratio of the multiplicative Zagreb‎ ‎indices for different values of $n$ and $b$‎. ‎All our results reduce to the ordinary recursive trees for $b=1$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative Zagreb Indices of Trees

Let G be a graph with vertex set V (G) and edge set E(G) . The first and second multiplicative Zagreb indices of G are Π1 = ∏ x∈V (G) deg(x) 2 and Π2 = ∏ xy∈E(G) deg(x) deg(y) , respectively, where deg(v) is the degree of the vertex v . Let Tn be the set of trees with n vertices. We determine the elements of Tn , extremal w.r.t. Π1 and Π2 . AMS Mathematics Subject Classification (2000): 05C05, ...

متن کامل

Multiplicative Zagreb indices of k-trees

Let G be a graph with vetex set V (G) and edge set E(G). The first generalized multiplicative Zagreb index of G is ∏ 1,c(G) = ∏ v∈V (G) d(v) , for a real number c > 0, and the second multiplicative Zagreb index is ∏ 2(G) = ∏ uv∈E(G) d(u)d(v), where d(u), d(v) are the degrees of the vertices of u, v. The multiplicative Zagreb indices have been the focus of considerable research in computational ...

متن کامل

On multiplicative Zagreb eccentricity indices

Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

On multiplicative Zagreb indices of graphs

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

متن کامل

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  37- 45

تاریخ انتشار 2017-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023